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Large-Scale Machine Learning for Malware
Characterization using Graphs
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CYBER 20/20 (]

John Cavazos, Ph.D.
CEO and Founder of Cyber 20/20

Current Associate Professor at the University of Delaware

Former JP Morgan Faculty Fellow at Inst. For Financial Services Analytics
20 years experience applying machine learning to problems involving code
Spent one year with High Performance Computing Group at JP Morgan
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* Over 100K malware variants created every hour

* Bad actors have embraced automation

* Good actors still construct security defenses manually
—Slow and error prone
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The Problem

* “Mis-match” between bad actor techniques and good actor tools
has caused high profile breaches to occur:

WannaCry Ransomware Attack

Patch for U ARG admeis (A amales Rlmea

Hackers accessed SWIFT to Steal $81 Million
& Erase Evidence
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Today’s Methods of Protection

UPDATE
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Software Patching
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Secure Communication

Security Products

CYBER HYGIENE
Employee Training

But are these effective? Results say...not really!



Machine Learning ==  Malware Characterization
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What is Machine Learning?

Computer algorithms
that learn from and
make predictions on
data.

https://en.wikipedia.org/wiki/Machine_learning

Learn a good
separation between
Malware and Goodware



How Does Machine Learning Work?

All Malware B Step 1:
— 1| @ And . Training Data Train
oodware
Coming In (e.g., Feature Vectors) Predictive
To Your |:>
Network Model
| =
| L |

Learning
Algorithm

Predictive Model
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How Does Machine Learning Work?
Step 2:
Deploy
Predictive
Model

New Feature A Prediction
Vector

Malware or For Example:
Goodware |::> | > | @ [:> Is File
Files come Good or

o
Into your Net Predictive Model Bad
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Deep Learning is a subset of Machine Learning

Deep Learning
Malware? i
Family? :
Capabilities?
Trends? l
Metrics? :
Priorities?

Embedding

Deep Learning is a neural network with many
layers of nonlinear processing units Each successive
layer uses the output from the previous layer as input
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The Solution: Deep Learning + Security
Why Now? Because these are readily available!

4 7iramazon

web services

+

Repository of Deep Learning =

Billions of Performance
Malware Open Source Cloud Computing
Big Data Frameworks Inexpensive




Output

 Malware?
 What Family?
« Capabilities?
* Trends?

Predictions

Suspicious Extract
File Features Neural Network

Deep Learning models can predict malware
with very high accuracy and at network speed
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What is Malware Characterization?

« Example of Malware Characteristics:
 [s it file encrypted?
* Does it send spam?
* Does it read / steal private information?
« Will it encrypt data”?
* Does it make a network connection?
« What does the reverse-engineered
code look like?
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Malware Characterization

Bytes

e Shannon Entropy
e Bytes N-grams

e Strings

Code
e Instruction N-grams
e Statistics
o Function, Blocks
o Calls, Branches
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Malware Characterization

State-of-the-Art
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Byte Entropy Summarized Code

* Feature Vector Characterization
« Byte Entropy Histograms
« Summarized Code Structure

VS

Graph-Based

Static Graphs  Dynamic Graphs

« Graph-Based Characterization
» Static Code Graphs
« Dynamic Behavioral Graphs
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Malware Classification using Machine Learning
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Malware Stream

Data from Reversing Labs
e Billions of malware

e Curated streams

Financial stream
e 1.65 millions

e 40+ families
Selected 11 families with > 1000 malware
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Malware Features for Deep Learning

Characterization Format Size
7)) bytes-entropy histogram | | |
c?- % statistics 43 *“""" RN 0
gy Global l-grams | vector 59
~+ S,
] 2-
groms 2800 YNV
statistics 20 x 23 T e ]
@ Function l-grams | matrix | 20 x 53 o
2 2-grams 20 x 2809
g statistics 20 x 10
Q Block I-grams | matrix | 20 x 53
o 2-grams 20 x 2809 .
| Operations | statistic | matrix | 20 x 2 -
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Summary of Best Results: Ensemble of DNNs

Models 1 best 2 best 5 best

BEH & Global level 16.0% 15.3% 13.8%
Graph-Based 84%  8.0%  8.0%
All Features 6.9% 6.5% 6.3%

50% improvement in accuracy using Graphs!
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An all-software product consisting of:

Deep neural network

1) a deep learning neural network in the cloud

2) a network tap (“threat analytics platform™) used to
extract and examine all files from traffic entering a critical
infrastructure network;

3) An analytics user interface to view results and provide
visibility;

4) Optional: Threat Intelligence feed into deep learning
“engine.”
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Questions ?

’ © John Cavazos
”~ CEO and Founder
Deep Machine Learning cavazos(@cyber2020.com
Meets Cybersecurity 302-690-6041

WWW.CYBER2020.COM



